
Numerical accuracy Geometry 1 / 40

Autonomous averaging and numerics

P. Chartier M. Lemou F.Méhats Léopold Trémant

Strasburg PDE seminar
18/10/2022

L. Trémant Autonomous averaging and numerics 18/10/2022 1 / 40



Numerical accuracy Geometry 2 / 40

Outline

1 The averaging procedure and numerical accuracy

Order reduction for the stiff Hénon-Heiles model

Overcoming the order reduction through averaging

2 The averaging procedure and geometry

Geometric considerations

Overcoming the asymptote

L. Trémant Autonomous averaging and numerics 18/10/2022 2 / 40



Numerical accuracy Geometry 3 / 40

Outline

1 The averaging procedure and numerical accuracy

Order reduction for the stiff Hénon-Heiles model

Overcoming the order reduction through averaging

2 The averaging procedure and geometry

Geometric considerations

Overcoming the asymptote

L. Trémant Autonomous averaging and numerics 18/10/2022 3 / 40



Numerical accuracy Geometry 4 / 40

A general model

We are concerned with models of the form

∂tyε =
1
ε

Ayε + f (yε), yε(0) = y0 ∈ X

Assumptions

The space (X , | · |) is a Banach
The operator A generates a 2π-periodic group θ 7→ eθA

The vector field f is analytic and bounded in an open subset K
For all ε small enough, the solution stays in K for t ∈ [0,1]

Some examples:
Non-linear Schrödinger
Non-relativistic Klein-Gordon
Vlasov equation with stiff magnetic field
Stiff Hénon-Heiles model
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The stiff Hénon-Heiles model – Equations

Consider the Hénon-Heiles model with a stiff direction
q̇1 =

1
ε

p1

q̇2 = p2

ṗ1 = −1
ε

q1 − 2q1q2

ṗ2 = −q2 − q 2
1 + q 2

2

Property – Error of standard schemes

For an usual numerical scheme of order q, the error is of the form

|yε(tn)− yn| ≤ C ∆t q
∥∥∂ q+1

t yε
∥∥

L1

where C depends on the scheme.

� Consider schemes that take into account the highly-oscillatory
nature of the problem.
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The stiff Hénon-Heiles model – Simulations
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Filtering the oscillations

∂tyε =
1
ε

Ayε + f (yε), yε(0) = y0 ∈ X

Property – Error of standard schemes

For an usual numerical scheme of order q, the error is of the form

|yε(tn)− yn| ≤ C ∆t q
∥∥∂ q+1

t yε
∥∥

L1

where C depends on the scheme.

� Consider schemes that take into account the highly-oscillatory
nature of the problem.

To that effect, we filter out the main oscillations by setting

uε(t) = e−tA/εyε(t), i.e. ∂tuε(t) = gt/ε
(
uε(t)

)
with gθ = e−θA f ◦ eθA.

L. Trémant Autonomous averaging and numerics 18/10/2022 7 / 40



Numerical accuracy Geometry 7 / 40

Filtering the oscillations

∂tyε =
1
ε

Ayε + f (yε), yε(0) = y0 ∈ X

Property – Error of standard schemes

For an usual numerical scheme of order q, the error is of the form

|yε(tn)− yn| ≤ C ∆t q
∥∥∂ q+1

t yε
∥∥

L1

where C depends on the scheme.

� Consider schemes that take into account the highly-oscillatory
nature of the problem.

To that effect, we filter out the main oscillations by setting

uε(t) = e−tA/εyε(t), i.e. ∂tuε(t) = gt/ε
(
uε(t)

)
with gθ = e−θA f ◦ eθA.

L. Trémant Autonomous averaging and numerics 18/10/2022 7 / 40



Numerical accuracy Geometry 8 / 40

The stiff Hénon-Heiles model – Filtering

We filter the oscillations with the symplectic change of variable
u1(t) = cos(t/ε)q1(t)− sin(t/ε)p1(t)
u2(t) = q2(t)
u3(t) = sin(t/ε)q1(t) + cos(t/ε)p1(t)
u4(t) = p2(t)

yielding ∂tuε(t) = gt/ε
(
uε(t)

)
with

gθ(u) =

∣∣∣∣∣∣∣∣
2u2 sin(θ)

(
u1 cos(θ) + u3 sin(θ)

)
u4
−2u2 cos(θ)

(
u1 cos(θ) + u3 sin(θ)

)
−u2 −

(
u1 cos(θ) + u3 sin(θ)

)2
+ u 2

2

This new equation in uε is better posed!
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Integral numerical schemes

On this new, non-autonomous problem, we may use integral schemes

u`+1 = un +

∫ t`+1

tn
gt/ε(un)dt (RK1)


u`+1/2 = u` +

∫ tn+∆t/2

tn
gt/ε(u`)dt

u`+1 = u` +

∫ t`+1

tn
gt/ε(u`+1/2)dt

(RK2)

Property – Error of integral schemes

The error of such a scheme of order q is of the form

|uε(t`)− u`| ≤ C ∆t q
∥∥∂ q

t uε
∥∥

L1

where C depends on the scheme.
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Order reduction

Figure: Numerical error on the Hénon-Heiles model for t ∈ [0, 1] when simulating with
the RK2 scheme.
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New notions of convergence

(uε0
` ) (u0

` )

u0(t)uε0 (t)

O
(∆

tq
)

O
(∆

tq
)

A
P

ε→ 0

ε→ 0
O

(∆
tq

)

U
A

Definition – Order of convergence

A method of order q is said to be
uniformly accurate (UA) if its uniform
order of convergence is not
degraded, i.e. if

sup
0<ε≤ε0

max
0≤`≤N

|uε(t`)− uε` | = O(∆tq).

We say a method is asymptotic
preserving (AP) if

lim
ε→0+

max
0≤`≤N

|uε(t`)− uε` | = O(∆tq).

These notions may depend on the initial conditions (e.g. near-equilibrium).
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Context and assumptions

∂tuε(t) = gt/ε
(
uε(t)

)
, uε(0) = u0 ∈ X0 ⊂ X

Assumptions on the vector field

(X , | · |) is a Banach
The map (θ,u) 7→ gθ(u) is 2π-periodic w.r.t. θ
The problem is well-posed up to t = 1 for all ε
The solution stays in K ⊂ X

The vector field may stem from the filtering uε(t) = e−
t
ε Ayε(t) of an

autonomous problem

ẏε =
1
ε

Ayε + f (yε) ⇔ ∂tuε(t) = e−
t
ε Af
(
e

t
ε Auε(t)

)
.
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Analyticity and complex expansions

We introduce the complex extensions of K as

Kρ := {u + ũ, (u, ũ) ∈ K × XC, |ũ|C ≤ ρ} .

XK

Kρ

ρ

XC

Assumption – Analyticity

There exists some R > 0 such that the vector field (θ,u) 7→ gθ(u) is
u-analytic in K, of radius everywhere greater than 2R. Furthermore,

sup
(θ,u)∈T×K2R

|gθ(u)| =: ‖g‖2R ≤ M,

where gθ(u + ũ) is defined from a Taylor series around u.
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Average behaviour

Figure: Exact and average dynamics for
ε = 0.5 up to t = 50.

The main dynamics are dictated
by the non-stiff problem

∂tu = 〈g〉(u),

with the average vector field

〈g〉 =
1

2π

∫ 2π

0
gθdθ.
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The averaging ansatz

We intend to decompose the solution uε as

uε(t) = Φε
t/ε ◦Ψε

t ◦
(
Φε

0
)−1

(u0)

with (θ,u) 7→ Φε
θ(u) a 2π-periodic change of variable and

(t ,u) 7→ Ψε
t (u) the flow of an autonomous equation.

Φε
θ(u) = u +O(ε) and

d
dt

Ψε
t (u) = Gε ◦Ψε

t (u).

,
In general, Φε and Gε can only be ex-
pressed as diverging formal series!

There are generally two types of averaging

Standard The simplest choice, 〈Φε〉 = id.
Stroboscopic A less direct but more geometric choice Φε

0 = id.
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Some literature

What I will talk about can be found in
Chartier, Lemou, Méhats, and Vilmart (FoCM 2020)

Chartier, Lemou, Méhats, and Trémant (in preparation)

My works extend this framework to other contexts
Relaxation problems with Chartier, Lemou (Math. Comp. 2022)

Multi-frequency problems with an added relaxation part, with
Bidégaray-Fesquet, Jourdana (in preparation)

Close to other methods of asymptotic/two-scale expansion
Homogeneisation
Chapman-Enskog expansion
Non-linear geometric optics
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The homological equation

After injecting the ansatz in the equation on uε, we obtain

∂θΦε
θ(u) = ε

(
gθ ◦ Φε

θ(u)− ∂uΦε
θ(u) · F ε(u)

)
.

Taking the average of this equation yields

Gε =
〈
∂uΦε(u)

〉−1〈g ◦ Φε〉(u).

This may therefore be written

∂θΦε = εΛ
(
Φε
)

The study of averaging may now focus on the
properties of this operator Λ !

This is mainly where this closed form approach differs from usual
multi-scale expansions.
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Well-posedness of averaging

The homological equation is “solved” iteratively with the relation

∂θΦ
[n+1]
θ = εΛ(Φ[n])θ and Φ[0] = id.

with either closure condition 〈Φ[n]〉 = id or Φ
[n]
0 = id. Denote δ[n] the

defect,

δ
[n]
θ =

1
ε
∂θΦ

[n]
θ − Λ(Φ[n])θ = Λ(Φ[n−1])θ − Λ(Φ[n])θ

Properties of the averaging procedure

For all n ∈ N, the averaging procedure is well defined for 0 < ε ≤ εn.
Specifically, with (n + 1)εn = M/(16R), then

‖Φ[n] − id ‖R ≤
ε

2εn
R, ‖G[n]‖R ≤ 2M, ‖δ[n]‖ ≤ 2M

(
ε

εn

)n

with in addition 〈δ[n]〉 = 0. Their derivatives w.r.t. θ are of the same
size, i.e. respectively O(ε), O(1) and O(εn).
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Asymptotic approximation of the solution

Considering a micro-macro decomposition,

uε(t) = Φ
[n]
t/ε

(
v(t)

)
+ w(t)

with v(t) = Ψ
[n]
t (u0), then

∂tw = gt/ε
(
Φ

[n]
t/ε(v) + w

)
− gt/ε

(
Φ

[n]
t/ε(v)

)
− δ[n]

t/ε(v)

� This is a quasi-linear equation with a source term !

A direct application of Gronwall’s lemma yields

∀t ∈ [0,1],
∣∣∣uε(t)− Φ

[n]
t/ε ◦Ψ

[n]
t (u0)

∣∣∣ ≤ C
(
ε

εn

)n+1

,

Note : By choosing n in function of ε, we may obtain an error bound of
the form

∀t ∈ [0,1],
∣∣∣uε(t)− Φ

[n(ε)]
t/ε ◦Ψ

[n(ε)]
t (u0)

∣∣∣ ≤ Ce−ν/ε
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Micro-macro decomposition

Considering a micro-macro decomposition,{
∂tv = G[n](v)

∂tw = gt/ε
(
Φ

[n]
t/ε(v) + w

)
− gt/ε

(
Φ

[n]
t/ε(v)

)
− δ[n]

t/ε(v)

Proposition – Uniform accuracy on the micro-macro problem

This problem is non-stiff up to its (n + 1)-th derivative and can
therefore be solved with uniform accuracy up to order n for standard
schemes and order n + 1 with integral schemes. In other words, we
may obtain

|v(t`)− v`|, |w(t`)− w`| ≤ C∆tn+1

with C independent of ε.

We finally recover an approximation of uε by setting

uε` = Φ
[n]
t`/ε

(
v`
)

+ w`
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Uniform accuracy of the micro-macro decomposition

Figure: Error as a function of ∆t for ε = 2−k for k ∈ {0, 1, . . . , 9} with the micro-macro
decomposition and integral numerical schemes.

From: Philippe Chartier, Mohammed Lemou, Florian Méhats, and Gilles Vilmart
(Feb. 2020). “A New Class of Uniformly Accurate Numerical Schemes for Highly
Oscillatory Evolution Equations”. In: Foundations of Computational Mathemat-
ics 20.1. ISSN: 1615-3375, 1615-3383
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The Hamiltonian case

We consider Hamiltonian systems in finite dimensions,

X = R2d .

Definition – Hamiltonian structure

A vector field (θ,u) 7→ gθ(u) is said to be Hamiltonian if there exists
(θ,u) 7→ Hθ(u) ∈ R such that

gθ(u) = J−1 ∇uHθ(u) where J =

(
0 Id
−Id 0

)
.

A mapping u 7→ φ(u) is symplectic if it preserves the structure, i.e. if

∂uφ(u) J−1(∂uφ(u)
)T

= J−1

Note: If y follows a Hamiltonian vector field and φ is symplectic, then
u = φ(y) also follows a Hamiltonian vector field.
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The stiff Hénon-Heiles model – Hamiltonian

In the case of the stiff Hamiltonian model,

H(q1,q2,p1,p2) =
1
2ε
(
p 2

1 + q 2
1
)

︸ ︷︷ ︸
1
ε H0

+
1
2
(
p 2

2 + q 2
2
)

+ q 2
1 q2 −

1
3

q 3
2︸ ︷︷ ︸

H1

such that the system is written

q̇ = ∇pH(p,q), ṗ = −∇qH(p,q)

After filtering with the change of variable uε(t) = e−
t
ε J−1∇H0yε(t), the

so-called filtered Hamiltonian is

Hθ = H1 ◦ eθJ−1∇H0

Hθ(u) =
1
2
(
u 2

2 + u 2
4
)

+
(
u1 cos(θ) + u3 sin(θ)

)2u2 −
1
3

u 3
2
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Flow and Hamiltonian problem

Considering a (possibly) time-dependent vector field (t ,u) 7→ ft (u),
the canonical associated flow is defined

d
dt
ϕt = ft ◦ ϕt , ϕ0 = id,

such that

y(t) = ϕt (y0) ⇔

{
ẏ = ft (y),

y(0) = y0.

Properties of the flow

The flow (t ,u) 7→ ϕt (u) of an ODE is symplectic if and only if the
associated vector field is Hamiltonian, i.e. ft = J−1∇Ht .
In the autonomous Hamiltonian case Ht = H, the Hamiltonian is
preserved by the flow.

As such, the previous filtering e−θJ−1∇H0 is naturally symplectic.
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Energy drift

Figure: Energy deviation for the RK1 scheme with ε = π
100 .
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The midpoint scheme – Energy

u`+1 = u` +

∫ t`+1

t`
gθ

(
1
2
(
u` + u`+1

))
dθ

Figure: Energy deviation for the midpoint scheme with ε = π/100.
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The midpoint scheme – Accuracy

Figure: Numerical error on the Hénon-Heiles model for t ∈ [0, 1] when simulating with
the integral midpoint scheme.
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Asymptotic geometric preservation

As it turns out, given maps Φ[n] and G[n] = O(1), the quality of
approximation

∀t ∈ [0,1],
∣∣∣uε(t)− Φ

[n]
t/ε ◦Ψ

[n]
t (u0)

∣∣∣ = O(εn+1),

with d
dt Ψ

[n]
t = G[n]

(
Ψ

[n]
t

)
, is enough to obtain the following geometric

result.

Theorem – Geometric conservation

If the flow generated by (t ,u) 7→ gt/ε(u) presents a geometric
property such as if

1 it is volume-preserving

2 it preserves I : R2d → R

3 it is symplectic

4 it is B-symplectic

then for ε small, the flow (t ,u) 7→ Ψ
[n]
t (u) presents the same property

up to O(εn+1).
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Pullback approach

This approach performs a sort of “high-order filtering” by setting

Φ
[n]
t/ε

(
v(t)

)
= uε(t).

� If Φ[n] is symplectic, then v satisfies a Hamiltonian equation.

This “pulled-back” or filtered variable satisfies

∂tv(t) =
(
∂uΦ

[n]
t/ε(v)

)−1
(

gθ ◦ Φ
[n]
t/ε(v)− 1

ε
∂θΦ

[n]
t/ε(v)

)

How do we ensure the symplecticity
of Φ[n]?

For the well-posedness of the problem, we remark the identity

∂tv(t) = G[n](v)−
(
∂uΦ

[n]
t/ε(v)

)−1
δ

[n]
t/ε(v)
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Correcting the change of variable

Consider the map at fixed θ, and write it as

Φ
[1]
θ = id + ε ω

[1]
θ “ = exp

(
ε ω

[1]
θ

)
+O(ε2) ”

with ω[1]
θ Hamiltonian! We may therefore introduce a formal variable s

and modify Φ
[1]
θ up to O(ε2) with

Φ
[1]
θ = U [1]

θ,s

∣∣∣
s=1

where ∂s U [1]
θ,s = ε ω

[1]
θ ◦ U

[1]
θ,s, U [1]

θ,0 = id .

This may be integrated using a midpoint method,

Φ
[1]
θ = id +ε ω

[1]
θ ◦

(
1
2

(id +Φ
[1]
θ )

)
.

For order 2, we identify ω[2]
θ such that

Φ
[2]
θ = id + ε ω

[2]
θ +

ε2

2
∂uω

[2]
θ · ω

[2]
θ +O(ε3)

and the same reasoning holds.
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Computing the new pullback equation

The midpoint scheme may be differentiated to obtain

1
ε
∂θΦ

[1]
θ = ∂θω

[1]
θ

(
Φ

[1/2]
θ

)
+ ∂uω

[1]
θ

(
Φ

[1/2]
θ

)
· ε

2

[
1
ε
∂θΦ

[1]
θ

]
(
∂uΦ

[1]
θ

)−1
= id−ε ∂uω

[1]
θ

(
Φ

[1/2]
θ

)
· 1

2

(
id +

(
∂uΦ

[1]
θ

)−1
)

where we denoted Φ
[1/2]
θ = 1

2

(
id +Φ

[1]
θ

)
.

The pullback equation is obtained from its definition

∂tv(t) =
(
∂uΦ

[1]
t/ε(v)

)−1
(

gθ ◦ Φ
[1]
t/ε(v)− 1

ε
∂θΦ

[1]
t/ε(v)

)

This new problem improves numerical accuracy
and preserves geometric structures!
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Uniform accuracy of the pullback method

Figure: Error as a function of ∆ t for ε = 2−k for k ∈ {0, 1, . . . , 9} with the pullback
problem and integral numerical schemes.

From: Philippe Chartier, Mohammed Lemou, Florian Méhats, and Gilles Vilmart
(Feb. 2020). “A New Class of Uniformly Accurate Numerical Schemes for Highly
Oscillatory Evolution Equations”. In: Foundations of Computational Mathemat-
ics 20.1. ISSN: 1615-3375, 1615-3383
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Evolution of energy with the pullback method

Figure: Error evolution on the Hamiltonian for the pulled-back midpoint method (blue:
∆t = 0.2, red: ∆t = 0.1) and for a method of order 3 (black).

From: Philippe Chartier, Mohammed Lemou, Florian Méhats, and Gilles Vilmart
(Feb. 2020). “A New Class of Uniformly Accurate Numerical Schemes for Highly
Oscillatory Evolution Equations”. In: Foundations of Computational Mathemat-
ics 20.1. ISSN: 1615-3375, 1615-3383
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Standard averaging of an autonomous problem

When applying this method on the filtration of an autonomous
problem, i.e. remember

ẏε =
1
ε

Ayε + f (yε) ⇔ ∂tuε(t) = e−
t
ε Af
(
e

t
ε Auε(t)

)
,

then the maps resulting of standard averaging satisfy

Φ
[n]
θ = Φ

[n]
0 ◦ eθA,

[
G[n],A

]
= 0, δ

[n]
θ = δ

[n]
0 ◦ eθA.

� Setting ṽ(t) = etA/εv(t) and w̃(t) = etA/εw(t), the micro-macro
problem becomes

∂t ṽ =
1
ε

Aṽ + G[n](ṽ)

∂t w̃ =
1
ε

Aw̃ + f
(
Φ

[n]
0 (ṽ) + w̃

)
− f
(
Φ

[n]
0 (ṽ)

)
− δ[n]

0 (ṽ)

and the first equation can be solved using a Lie splitting with no error.
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� Setting ṽ(t) = etA/εv(t) and w̃(t) = etA/εw(t), the micro-macro
problem becomes

∂t ṽ =
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Principle of normal forms

James Murdock (2006). Normal forms and unfoldings for local dynamical
systems. Springer Science & Business Media

The idea is to find a change of variable τ [n] such that

A + εf =
(
∂uτ

[n]
)−1

(A + εf [n] + εn+1R[n]) ◦ τ [n]

with [A, f [n]] = 0. Usually, ε represents the distance from a rest point.

Note : In the literature, “normal forms” are usually used for theoretical results
and “non-linear changes of variable” are for numerics.

Many methods exist to construct this τ [n]

depending on the context and the goal.

This τ [n] acts in the same way as
(
Φ

[n]
0

)−1.
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Classification of normal forms

Murdock basically distinguishes 3 methods to compute normal forms

1 Direct method
τ [n] = id +ετ1 + · · ·+ εnτn

� Akin to standard averaging.

2 Deprit’s method

τ [n] = τ
[n]
s

∣∣∣
s=1

with ∂sτ
[n]
s =

(
εX1 + . . .+ εnXn

)
◦ τ [n]

s

� Akin to post-correction stroboscopic averaging.

3 Hori’s method

τ [n] = τ
[n]
s

∣∣∣
s=ε

with ∂sτ
[n]
s =

(
sY1 + . . .+ snYn

)
◦ τ [n]

s
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Summary

Starting from an ansatz

uε(t) = Φε
t/ε ◦Ψε

t ◦
(
Φ

[n]
0

)−1
(u0)

with Φε periodic and Ψε a non-stiff flow, we derived
a closed form homological equation
a framework which extends fairly naturally to other contexts
modified problems solvable with uniform accuracy
and which naturally preserve some geometric properties

However, some obvious limitations remain:
the geometric properties are asymptotic
overcoming this asymptote requires ad-hoc tweaking
a seemingly natural link with (geometric) normal forms needs
studying
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with Φε periodic and Ψε a non-stiff flow, we derived
a closed form homological equation
a framework which extends fairly naturally to other contexts
modified problems solvable with uniform accuracy
and which naturally preserve some geometric properties

However, some obvious limitations remain:
the geometric properties are asymptotic
overcoming this asymptote requires ad-hoc tweaking
a seemingly natural link with (geometric) normal forms needs
studying

Thank you for you attention!
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